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ENSEMBLE MINIMAX ESTIMATION FOR
MULTIVARIATE NORMAL MEANS

By Lawrence D. Brown∗,†,‡, Hui Nie‡ and Xianchao Xie§

University of Pennsylvania‡ and Harvard University§

This article discusses estimation of a heteroscedastic multivariate
normal mean in terms of the ensemble risk. We first derive the ensem-
ble minimaxity properties of various estimators that shrink towards
zero. We then generalize our results to the case where the variances
are given as a common unknown but estimable chi-squared random
variable scaled by different known factors. We further provide a class
of ensemble minimax estimators that shrink towards the common
mean.

1. Introduction. We consider the problem of simultaneously estimat-
ing the mean parameter θ = (θ1, · · · , θp) from independent normal observa-
tions X ∼ N(θ, Σ), where Σ = diag{σ2

1, · · · , σ2
p}. For any estimator θ̂, our

loss function is the ordinary squared error loss

L(θ̂, θ) =
p∑

i=1

(θ̂i − θi)2.

The conventional risk function is the expected value of the loss function with
respect to θ. That is,

R(θ, θ̂) = Eθ(L(θ̂, θ)) =
p∑

i=1

Eθ(θ̂i − θi)2.

James and Stein (1961) study the homoscedastic case in which σ2 = σ2
1 =

· · · = σ2
p. In that case they prove the astonishing result that the James-Stein

shrinkage estimator

(1.1) δJ−S(X) =

(
1− Cσ2

‖X‖2

)
X

and its positive part

(1.2) δ+
J−S(X) =

(
1− Cσ2

‖X‖2

)

+

X
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dominate the MLE θ̂mle = X for 0 ≤ C ≤ 2(p− 2) and p ≥ 3. The discovery
by James and Stein has led to a wide application of shrinkage techniques
in many important problems. References include Efron and Morris (1975),
Fay and Herriot (1979), Rubin (1981), Morris (1983a), Green and Straw-
derman (1985), Jones (1991) and Brown (2008). The theoretical properties
of shrinkage estimators have also been extensively studied in the literature
under the homoscedastic Gaussian model. Since Stein’s discovery, “shrink-
age” has been developed as a broad statistical framework in many aspects
(Stein, 1962; Strawderman, 1971; Efron and Morris, 1971,1972a,1972b and
1973; Casella, 1980; Hastie et al., 2003).

There is also some literature discussing the properties of the James-Stein
shrinkage estimators under heteroscedasticity. James and Stein (1961) dis-
cuss the estimation problem under heteroscedasticity where the loss function
is weighted by the inverse of the variances. This problem can be transformed
to the homoscedastic case under ordinary squared error loss. Brown (1975)
shows that the James-Stein estimator is not always minimax and hence does
not necessarily dominate the usual MLE under ordinary squared error loss
when the variances are not equal. Specifically, the James-Stein shrinkage
estimator does not dominate the usual MLE when the largest variance is
larger than the sum of the rest. Moreover, Casella (1980) argues that the
James-Stein shrinkage estimator may not be a desirable shrinkage estima-
tor under heteroscedasticity even if it is minimax. Minimax estimators in
general shrink most on the coordinates with smaller variances, while Bayes
estimators shrink most on large variance coordinates.

In many applications, θi are thought to follow some exchangeable prior
distribution π. It is then natural to consider the compound risk function
which is then the Bayes risk with respect to the prior π

R(π, θ̂) = Eπ(R(θ, θ̂)) =
∫

R(θ, θ̂)π(dθ).

Efron and Morris (1971, 1972a, 1972b and 1973) address this problem from
both the Bayes and empirical Bayes perspective. They extensively develop
this framework. Especially, they consider a prior distribution of the form
θ ∼ Np(0, τ2I) with τ ∈ [0,∞), and they use the term “ensemble risk”
for the compound risk. Morris and Lysy (2009) discuss the motivation and
importance of shrinkage estimation in this multi-level normal model. The
ensemble risk is described as the level-II risk in Morris and Lysy (2009).

By introducing a set of ensemble risks R(π, θ̂) (π ∈ P), we can then
discuss ensemble minimaxity and other properties with respect to a set of
prior distributions P. We elaborate the definitions of ensemble minimaxity
and other properties in Section 2. The previously cited papers (and others)
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discuss the desirability of the ensemble risks with respect to the normal
priors θ ∼ Np(0, τ2I) with τ ∈ [0,∞). In this paper, we will concentrate on
the ensemble minimaxity of various estimators in this respect.

Brown (2008) discusses the connection between the parametric empiri-
cal Bayes estimator and the random effects model. In fact, the estimation
problem of group means in a one way random effects model with infinite
degrees of freedom for errors (and hence known error variance) is equivalent
to the above problem. Our ensemble risk then corresponds to the ordinary
risk function in the random effects model.

The more familiar unbalanced one-way random effects model is exactly
equivalent to the generalization considered in Section 5. Again, ensemble
risk in the empirical Bayes sense corresponds to ordinary prediction risk for
the random effects model. We close Section 5 with a summary statement
describing estimators proven to dominate the ordinary least squares group
means in the random effect model.

Our article is organized as follows. In Section 2, we introduce necessary
definitions and notations related to ensemble minimaxity. In Section 3, we
discuss the ensemble minimaxity of various shrinkage estimators under het-
eroscedasticity. These include generalizations of the James-Stein estimator
as well as versions of the empirical Bayes estimators proposed in Carter and
Rolph (1974) and Brown (2008). In Section 4, We generalize our results to
the case where the variances are given as a common unknown but estimable
chi-squared random variable scaled by different known factors. In Section 5,
we provide a class of ensemble minimax estimators that shrink towards the
common mean.

2. Ensemble Minimaxity. As discussed above, we study in this paper
the behavior of shrinkage estimators based on the ensemble risk

R(π, θ̂) = Eπ(R(θ, θ̂)) =
∫

R(θ, θ̂)π(dθ) .

If the prior π(θ) is known, the resulting posterior mean Eπ(θ|x) is then the
optimal estimate under the sum of the squared error loss. However, it is
often infeasible to exactly specify the prior. To avoid excessive dependence
on the choice of prior, it is natural to consider a set of priors P on θ and
study the properties of various estimators based on the corresponding set
of ensemble risks. As in the classic decision theory, there rarely exists an
estimator that achieves the minimum ensemble risk uniformly for all π ∈ P.
A more realistic goal as pursued in this paper is to study the ensemble
minimaxity (defined shortly) of familiar shrinkage estimators.
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Recall that with ordinary risk R(θ, δ), an estimator δ is said to dominate
another estimator δ′ if

R(θ, δ) ≤ R(θ, δ
′
)

holds for each θ ∈ Θ with strict inequality for at least one θ. The estima-
tor δ is inadmissible if there exists another procedure which dominates δ;
otherwise δ is admissible. δ is said to be minimax if

sup
θ∈Θ

R(θ, δ) = inf
δ′

sup
θ∈Θ

R(θ, δ
′
) ,

that is, the estimator attains the minimum worst-case risk. Similarly for the
case of ensemble risk we have the following definitions.
Ensemble admissibility and minimaxity. Given a set of priors P, an
estimator δ is said to dominate another estimator δ′ with respect to P if

R(π, δ) ≤ R(π, δ
′
)

holds for each π ∈ P with strict inequality for at least one π. The estimator δ
is ensemble inadmissible with respect to P if there exists another procedure
which dominates δ, otherwise δ is ensemble admissible. The estimator δ is
ensemble minimax with respect to P if

sup
π∈P

R(π, δ) = inf
δ
′ sup

π∈P
R(π, δ

′
) .

The motivation for the above definitions comes from the use of the em-
pirical Bayes method in simultaneous inference. Efron and Morris (1972a),
building from Stein (1962), derive the James-Stein estimator through the
parametric empirical Bayes model with θi ∼ N(0, τ2). Note that in such an
empirical Bayes model, τ2 is the unknown parameter. (Parameter here refers
to an unknown non-random quantity.) Ensemble admissibility and minimax-
ity with respect to P = {θi ∼ N(0, τ2) : 0 < τ2 < ∞} is then exactly the
counterpart of ordinary admissibility and minimaxity in the empirical Bayes
model. Consistent with this, we also confine P to be the one given above.
Another reason for preferring such a set P is because it enjoys the conjugate
minimaxity property (Morris, 1983a). From now on, mention of this under-
lying set P will be omitted whenever confusion is unlikely. As a explicit
notation in this setting, we define Rτ2(δ) = R(π, δ) for π = N(0, τ2).

Note that ensemble minimaxity can also be interpreted as a particular
case of Gamma minimaxity studied in the context of robust Bayes analysis
(Good, 1952; Berger, 1979). However, in such studies, a “large” set consisting
of many diffuse priors are usually included in the analysis. Since this is quite
different from our formulation of the problem, we use the term ensemble
minimaxity throughout our paper, following the Efron and Morris papers
cited above.



ESTIMATION FOR MULTIVARIATE NORMAL MEANS 5

3. Main Results on Ensemble Minimaxity. In this section, we
discuss the ensemble minimaxity of various shrinkage estimators. We first
present a general theorem characterizing a class of shrinkage estimators that
are ensemble minimax. We then study the ensemble minimaxity of James-
Stein-type shrinkage estimators, along with several supplementary theorems
highlighting the difference and similarity between our results and those ob-
tained in the homoscedastic case. Finally, we investigate the ensemble min-
imaxity of the parametric empirical Bayes estimator via method of mo-
ment estimation, a case with several open problems unresolved during our
study. Throughout the current discussion, the variances σ2

i are assumed to
be known; the case of unknown σ2

i is addressed in the next section.

3.1. General Theory. As discussed in Section 1, when p ≥ 3 and 0 ≤
C ≤ 2(p − 2), both δJ−S in (1.1) and δ+

J−S in (1.2) are known to be min-
imax under the homoscedastic model. However, this is not always the case
under the heteroscedastic model. Brown (1975) shows that for any C > 0, if∑

σ2
i ≤ 2max{σ2

i }, both δJ−S in (3.1) and δ+
J−S in (3.2) are no longer min-

imax in the ordinary sense. This is one motivation for instead studying the
ensemble minimaxity for these shrinkage estimators. Before presenting our
main result, we first give a lemma concerning the evaluation of the ensemble
risk Rτ2(δ) that will be repeatedly used in subsequent discussion.

Lemma 3.1. The ensemble risk of any estimator δ with the form δi(X) =
(1− hi(X))Xi can be written as

Rτ2(δ) =
p∑

i=1


Ex

(
σ2

i

τ2 + σ2
i

Xi − hi(X)Xi

)2

+
τ2σ2

i

τ2 + σ2
i


 ,

where the expectation is taken with respect to the joint distribution of X such
that Xi ∼ N(0, τ2 + σ2

i ) and all the coordinates are jointly independent.

Proof. By definition, we have

Rτ2(δ) =
∫ ∫

L(θ, δ(x))Px|θ(dx)πτ (dθ) =
p∑

i=1

E(Xi − θi)2 .

Note that
(

θi

Xi

)
∼ N

((
0
0

)
,

(
τ2 τ2

τ2 τ2 + σ2
i

))
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and (θi, Xi) are jointly independent for different i, we have from the property
of conditional expectation

Rτ2(δ) =
p∑

i=1

[Ex(δi(X)− E(θi|X))2 + Ex(E((θi − E(θi|Xi))2|X))]

=
p∑

i=1


Ex

(
(1− hi(X))Xi − τ2

τ2 + σ2
i

Xi

)2

+
τ2σ2

i

τ2 + σ2
i




=
p∑

i=1


Ex

(
σ2

i

τ2 + σ2
i

Xi − hi(X)Xi

)2

+
τ2σ2

i

τ2 + σ2
i




where Ex is used to emphasize that the expectation is taken with respect
to the marginal distribution of X, i.e., each coordinate Xi has the normal
distribution N(0, τ2 + σ2

i ) and they are jointly independent.

Under the heteroscedastic model, we define the James-Stein-type estima-
tor δJ−S as

(3.1) (δJ−S(X))i =

(
1− Cσ2

i

‖X‖2

)
Xi .

Its positive part δ+
J−S is then

(3.2) (δ+
J−S(X))i =

(
1− Cσ2

i

‖X‖2

)

+

Xi .

Estimators of this general form appear as a generalization of the original
James-Stein proposal in Brown (1966). See also Efron and Morris (1971).
To study the ensemble minimaxity of these two estimators, we first present
a general result that characterizes a class of shrinkage estimators that are
ensemble minimax.

The general result refers to estimators with the form δi(X) = (1 −
hi(X))Xi, as in Lemma 3.1, and in which hi is symmetric in the sense that

hi(X) = hi(X2
1 , · · · , X2

p ).(3.3)

In addition, we define

W =
p∑

j=1

X2
j

τ2 + σ2
j

(3.4)

Ti =
X2

i

W (τ2 + σ2
i )

, i = 1, · · · , p.(3.5)
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In this way X2
i = (τ2 + σ2

i )WTi, and h can be rewritten as a function of
T = (T1, · · · , Tp) and W . With a minor extension of the notation, write
h(T ,W ) = h((τ2 + σ2

1)WT1, · · · , (τ2 + σ2
p)WTp).

Theorem 3.1. An estimator δ with the form δi(X) = (1 − hi(X))Xi

is ensemble minimax if each shrinkage factor hi(X) satisfies the following
conditions:

(1) hi(X) ≥ 0, ∀X.
(2) hi(X) can be written in the form (3.3).
(3) hi(T ,W ) is decreasing in W for fixed T .
(4) hi(T ,W )W is increasing in W for fixed T .
(5)

E

[
sup
T

hi(T ,W )

]
≤ 2σ2

i

σ2
i + τ2

.

Proof. From Lemma 3.1. and the fact that

Rτ2(δ0) =
p∑

i=1

σ2
i ,

it suffices to show that for each i,

(3.6) E

(
σ2

i

σ2
i + τ2

Xi − hi(X)Xi

)2

≤ σ4
i

τ2 + σ2
i

,

which is equivalent to

E
[
hi(X)2X2

i

]
≤ 2σ2

i

τ2 + σ2
i

E
[
hi(X)X2

i

]
.

To prove the above inequality, first note that condition (2) indicates

E
[
hi(X)2X2

i

]
= E

[
hi(T ,W )2(τ2 + σ2

i )TiW
]

= E
[
E(hi(T ,W )(τ2 + σ2

i )TiW × hi(T ,W )|T )
]

.

From condition (3), (4) and the covariance inequality, we then have

E
[
hi(X)2X2

i

]
≤ E[E(hi(T ,W )(τ2 + σ2

i )TiW |T )× E(hi(T ,W )|T )] ,
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which implies

E
[
hi(X)2X2

i

]
≤ E

[
E(hi(T ,W )(τ2 + σ2

i )TiW |T )× E

(
sup
T

hi(T , W )|T
)]

.

Based on the independence of T and W , we have

E
[
hi(X)2X2

i

]
≤ E

[
E(hi(T ,W )(τ2 + σ2

i )TiW |T )× E

(
sup
T

hi(T ,W )

)]

= E

(
sup
T

hi(T ,W )

)
× E[hi(T ,W )TiW ] ,

which along from condition (5) shows

E
[
hi(X)2X2

i

]
≤ 2σ2

i

σ2
i + τ2

E(hi(T ,W )(τ2 + σ2
i )TiW ) =

2σ2
i

σ2
i + τ2

E(hi(X)X2
i ) .

This proves the ensemble minimaxity of δ.

Note that most of the conditions in Theorem 3.1. are rather intuitive to
understand. Condition (1) simply means that the estimator is indeed a gen-
uine shrinkage estimator, and never an expander. Condition (2) implies the
shrinkage estimator has a certain natural symmetry property. Condition (3)
requires the amount of shrinkage to decrease when the distance of the data
vector is further away from the origin. Condition (5) controls the expected
overall amount of shrinkage according to the ratio of the variability of the
observation and that of the prior, but this condition is less intuitive than
the others.

Let µ ∈ Rp. Consider estimation of the linear combination µtθ under
squared error loss Llc(d, θ) = (d−µtθ)2. Ordinary minimaxity and ensemble
minimaxity can be defined for this loss. As a Corollary to Theorem 3.1, we
have

Corollary 3.1. Assume conditions (1)-(5) of Theorem 3.1. Then the
estimator η̂ = µtδ is an ensemble minimax estimator of η = µtθ.

Proof. From the proof of Theorem 3.1., we see that ensemble minimax-
ity is actually achieved for each coordinate, that is, for any i = 1, · · · , p,

Rlc(δi, θi) ≤ σ2
i .

This proves validity of the corollary.
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3.2. Ensemble Minimaxity of James-Stein-type Shrinkage Estimators. With
Theorem 3.1., we then proceed to study the ensemble minimaxity of certain
shrinkage estimators. These estimators include the original James-Stein es-
timators. As we will show, the original James-Stein estimator is often-but
not always-ensemble minimax. Consider the estimator δGS with the form

(3.7) (δGS(X))i =

(
1− λiσ

2
i

νiσ2
i + ‖X‖2

)
Xi ,

where λi and νi are properly chosen constants. Consider also its positive
part version δ+

GS given by

(3.8) (δ+
GS(X))i =

(
1− λiσ

2
i

νiσ2
i + ‖X‖2

)

+

Xi .

Note that these forms are generalizations of the original James-Stein forms,
as can be seen by setting νi = 0, λi = C.

The following two corollaries state conditions under which δGS in (3.7)
and δ+

GS in (3.8) are ensemble minimax.

Corollary 3.2. δGS in (3.7) is ensemble minimax if p ≥ 3 and for any
i = 1, · · · , p, 0 ≤ λi ≤ 2(p − 2) and νi ≥ (λi/2 − (p − 2) · σ2

min/σ2
i )+ with

σ2
min = min

i
{σ2

i }.

Corollary 3.3. δ+
GS in (3.8) is ensemble minimax if p ≥ 3 and for any

i = 1, · · · , p, 0 ≤ λi ≤ 2(p − 2) and νi ≥ [λi − (p − 2)(1 + σ2
min/σ2

i )]+ with
σ2

min = min
i
{σ2

i }.

Remarks: When νi = 0 and λi = C, δGS in (3.7) and δ+
GS in (3.8) reduce

to the James-Stein estimators in (3.1) and (3.2). In the case where σ2
i are

all equal, Corollary 3.2 and 3.3 show that δJ−S in (3.1) and δ+
J−S in (3.2)

are each ensemble minimax when 0 ≤ C ≤ 2(p− 2). This reaches the same
conclusion as James and Stein (1961).

When the values of σ2
i are not all equal, the results in Corollary 3.2 and

3.3 do not always establish ensemble minimaxity of δJ−S in (3.1) and δ+
J−S

in (3.2) for the entire range 0 ≤ C ≤ 2(p− 2). Specializing the conditions of
Corollary 3.2 to the case where λi = C and νi = 0 yields that δJ−S in (3.1)
is ensemble minimax if

C ≤ 2(p− 2)
σ2

min

σ2
max

.(3.9)
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Thus, for any C > 0, there are configurations of σ2
1, · · · , σ2

p for which the
conditions in Corollary 3.2 fail to prove δJ−S in (3.1) is ensemble minimax.

For δ+
J−S in (3.2), the situation is a little different. Specializing the con-

ditions of Corollary 3.3 to the case λi = C and νi = 0 yields that δ+
J−S in

(3.2) is ensemble minimax if

C ≤ (p− 2)(1 +
σ2

min

σ2
max

).(3.10)

Hence, when C ≤ p− 2, the conditions in Corollary 3.3 are always satisfied
by δ+

J−S in (3.2). However, for any C > p − 2, there are configurations of
σ2

1, · · · , σ2
p for which Corollary 3.3 fails to prove δ+

J−S in (3.2) is minimax.
Theorem 3.2 and 3.3 below address ensemble minimaxity of δJ−S in (3.1)

when C > 0 and δ+
J−S in (3.2) when C > p− 2. They state conditions under

which δJ−S in (3.1) and δ+
J−S in (3.2) can fail to be ensemble minimax when

C > 0 or C > p − 2, respectively. There is a gap between the conditions
in Corollaries 3.2 and 3.3. We do not as yet have a formulation of a sharp
necessary and sufficient condition for ensemble minimaxity of δJ−S in (3.1)
and δ+

J−S in (3.2) in the case of general σ2
1, · · · , σ2

p.

Proof. Proof of Corollary 3.2
It is sufficient for us to verify that the conditions in Theorem 3.1 are

satisfied by

hi(X) =
λiσ

2
i

νiσ2
i + ‖X‖2

=
λiσ

2
i

νiσ2
i +

∑p
j=1(σ

2
i + τ2)TiW

= hi(T , W ) .

Clearly, the shrinkage factor hi(X) satisfies conditions (1)-(4). For (5), define
gi(W ) as

gi(W ) =
λiσ

2
i

νiσ2
i + (σ2

min + τ2)W
.

Then, supT hi(T ,W ) ≤ gi(W ). Using the covariance inequality, we have

E[gi(W )] = E

[
λiσ

2
i /W

νiσ2
i /W + σ2

min + τ2

]
≤ E[λiσ

2
i /W ]

E[νiσ2
i /W + σ2

min + τ2]

=
λiσ

2
i

νiσ2
i + (p− 2)(σ2

min + τ2)
.
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From the condition 0 ≤ λi ≤ 2(p− 2) and νi ≥ (λi/2− (p− 2) · σ2
min/σ2

i )+ ,
it is then easy to verify

λiσ
2
i

νiσ2
i + (p− 2)(σ2

min + τ2)
≤ 2σ2

i

σ2
i + τ2

,

which completes the proof.

Proof. Proof of Corollary 3.3
As in the proof of Corollary 3.2., it is sufficient for us to verify that

conditions in Theorem 3.1 are satisfied by h+
i (X) = hi(X) ∧ 1, where

hi(X) =
λiσ

2
i

νiσ2
i + ‖X‖2

=
λiσ

2
i

νiσ2
i +

∑p
j=1(σ

2
i + τ2)TiW

= hi(T , W ) .

Conditions (1)-(4) are straightforward. If τ2 ≤ σ2
i , (5) is also automatically

satisfied. Assuming τ2 > σ2
i , define gi(W ) as

gi(W ) =
λiσ

2
i

νiσ2
i + (σ2

min + τ2)W
.

Note that supT hi(T , W ) ≤ gi(W ). Using the covariance inequality we have

E[gi(W )] = E

[
λiσ

2
i /W

νiσ2
i /W + σ2

min + τ2

]
≤ E[λiσ

2
i /W ]

E[νiσ2
i /W + σ2

min + τ2]

=
λiσ

2
i

νiσ2
i + (p− 2)(σ2

min + τ2)
.

Now we only need to show

λiσ
2
i

νiσ2
i + (p− 2)(σ2

min + τ2)
≤ 2σ2

i

σ2
i + τ2

for τ2 > σ2
i , which is equivalent to

2σ2
i ((p− 2)− νi) ≤ (σ2

i + τ2)(2(p− 2)− λi) + 2(p− 2)σ2
min .

Since 0 ≤ λi ≤ 2(p− 2) and νi ≥ [λi − (p− 2)(1 + σ2
min/σ2)]+, we have

2σ2
i ((p− 2)− νi) ≤ 2σ2

i (2(p− 2)− λi) + 2(p− 2)σ2
min

≤ (σ2
i + τ2)(2(p− 2)− λi) + 2(p− 2)σ2

min ,

which completes the proof.
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Theorem 3.2. For any C = c(p − 2) with c > 1, there exists some
sufficiently large p ≥ 3 and some σ2

1, · · · , σ2
p such that δ+

J−S in (3.2) is not
ensemble minimax.

Proof. Fix σ2
1 > 0 and set σ2

2 = · · · = σ2
p = σ2. Let σ2 → 0. In order to

show that δ+
J−S dominates δ0 with respect to P, we have to prove

(3.11) E
[
h1(X)2X2

1

]
≤ 2σ2

1

τ2 + σ2
1

E
[
h1(X)X2

1

]

with

h1(X) =
c(p− 2)σ2

1

‖X‖2
∧ 1 .

However, the law of large numbers implies that

c(p− 2)σ2
1

‖X‖2
=

c(p− 2)σ2
1

p

p

‖X‖2
→ cσ2

1

τ2

as p →∞. Let σ2
1 < τ2 < cσ2

1, we then have

h1(X) → 1

as p →∞. Since 0 < h1(X) ≤ 1, the dominated convergence theorem implies

E(h1(X)2X2
1 ) → τ2 + σ2

1

and
E(h1(X)X2

1 ) → τ2 + σ2
1 .

However, our choice of σ2
1 and τ2 indicates

1 >
2σ2

1

τ2 + σ2
1

,

which means that the inequality (3.11) does not hold for large p. Hence,
δ+
J−S in (3.2) is not ensemble minimax for some p and σ2

1, · · · , σ2
p.

The above results show that for δ+
J−S in (3.2) to be ensemble minimax,

the constant C must have a much smaller upper bound under the general
heteroscedastic model than under the homoscedastic one. Furthermore, it
is proved below that δJ−S in (3.1) is not even always ensemble minimax
regardless of the choice of C.
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Theorem 3.3. For any C > 0, there exists some σ2
1,· · · ,σ2

p such that
δJ−S in (3.1) is not ensemble minimax.

Proof. Fix σ2
1 = 1, and let σ2

2 = · · · = σ2
p = σ2. It suffices to show

lim
τ2 → 0

σ2 → 0

Rτ2(δJ−S) = ∞ .

From Lemma 3.1., we have

lim
τ2 → 0

σ2 → 0

Rτ2(δJ−S) ≥ lim
τ2 → 0

σ2 → 0

E

(
1

τ2 + 1
X1 − C

‖X‖2
X1

)2

≥ lim
τ2 → 0

σ2 → 0

1
2
E

(
C

‖X‖2
X1

)2

− lim
τ2 → 0

σ2 → 0

E

(
1

τ2 + 1
X1

)2

≥ lim
τ2 → 0

σ2 → 0

1
2
E

(
C2X2

1

‖X‖4

)
− 1 .

Since the last term is finite, it is sufficient to prove

lim
τ2 → 0

σ2 → 0

E

(
X2

1

‖X‖4

)
= ∞ .

Let X1 =
√

1 + τ2Z1, Z1 ∼ N(0, 1), and Xi =
√

τ2 + σ2Zi, Zi ∼ N(0, 1),
∀i = 2, · · · , p. Therefore,

E

(
X2

1

‖X‖4

)
= (1 + τ2)E

(
Z2

1

((1 + τ2)Z2
1 + (τ2 + σ2)

∑p
i=2 Z2

i )2

)
.

Note that Z2
1

((1+τ2)Z2
1+(τ2+σ2)

∑p

i=2
Z2

i )2
is increasing when both σ2 and τ2 de-

crease to zero and

lim
τ2 → 0

σ2 → 0

X2
1

‖X‖4
=

1
Z2

1

.

From the monotone convergence theorem, we have

lim
τ2 → 0

σ2 → 0

E

(
X2

1

‖X‖4

)
= E

(
1

Z2
1

)
= ∞

which completes the proof.
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The fact that δJ−S in (3.1) is not in general ensemble minimax may be
quite surprising at first glance. However, this is to be expected given the form
of δJ−S . Under the heteroscedastic model, δJ−S may have a non-negligible
probability of dramatically over-shrinking, which causes the performance of
the shrinkage estimator to deteriorate; while such an issue is always well
controlled in the homoscedastic case.

Similar to the homoscedastic case, δ+
J−S in (3.2) is always better than

δJ−S in (3.1) in terms of ensemble risk under the heteroscedastic model. A
general result is given in the following theorem.

Theorem 3.4. Let δ be any estimator with the form δi(X) = (1 −
hi(X))Xi and δ+(X) be its positive part estimator such that δ+

i (X) = (1−
hi(X))+Xi. If P (δ 6= δ+) > 0, then δ+ dominates δ with respect to P.

Proof. First note that δ+
i is equivalently written as δ+

i (X) = (1 −
h+

i (X))X, where h+
i (X) = hi(x) ∧ 1. From Lemma 3.1., we have

Rτ2(δ+)−Rτ2(δ)

=
p∑

i=1

E

[(
h+

i (X) + hi(X)− 2σ2
i

τ2 + σ2
i

)
(hi(X)− h+

i (X))X2
i

]
.

Since for any i = 1, · · · , p,

hi(X)− h+
i (X) =

{
hi(X)− 1 , if hi(X) > 1

0 , if hi(X) ≤ 1
,

we then have

Rτ2(δ+)−Rτ2(δ)

=
p∑

i=1

E

[(
h+

i (X) + hi(X)− 2σ2
i

τ2 + σ2
i

)
(hi(X)− h+

i (X))X2
i

]

=
p∑

i=1

E

[(
1 + hi(X)− 2σ2

i

τ2 + σ2
i

)
(hi(X)− 1)X2

i I{hi(X)>1}

]

≥
p∑

i=1

E

[(
2− 2σ2

i

τ2 + σ2
i

)
(hi(X)− 1)X2

i I{hi(X)>1}

]
> 0

which completes the proof.

Corollary 3.4. For any constant C ≥ 0, δ+
J−S in (3.2) dominates δJ−S

in (3.1) with respect to P.

Proof. Directly from Theorem 3.4..
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3.3. Parametric empirical Bayes estimator (via Method of Moments).
Carter and Rolph (1974), Brown (2008) and Efron and Morris (1973, 1975)
each derive parametric empirical Bayes estimators for the heteroscedastic
problem. The first two papers use method of moments to estimate the hy-
perparameter τ2. (Morris and Lysy (2009) also discuss such estimators.) We
will discuss here ensemble minimaxity of such empirical Bayes estimators.

In contrast, Efron and Morris (1973, 1975) use a maximum likelihood
method for this step. The resulting estimation does not have an explicit
closed form, although it is easily calculated numerically. For this reason we
have (so far) been less successful in settling the ensemble minimaxity of this
empirical Bayes version, and we do not address this issue here.

In this subsection, we treat the special case of shrinkage to 0. The pre-
viously cited references (and others) involve shrinkage to a common mean.
This generalization is treated in Section 5. While our results in the present
subsection shed some light on the ensemble minimaxity of these estimators,
they are unfortunately not as nearly complete as are our preceding results
about generalized James-Stein estimators.

As mentioned above, if τ2 is known, the optimal estimator of θi (i =
1, · · · , p) would be

(3.12) (δB(X))i =

(
1− σ2

i

τ2 + σ2
i

)
Xi ,

which is the Bayes estimator. However in the empirical Bayes setting, τ2 is
an unknown hyper-parameter to be estimated. The idea of the parametric
empirical Bayes method is to use {Xi} to obtain an estimate of τ2 and then
substitute the estimate of τ2 into (3.12) to yield a final estimator of {θi}.
Below we use the method of moments estimator

τ̃2 =
1
p

p∑

i=1

(X2
i − σ2

i ),

and its positive part

τ̃2
+ =

1
p

[ p∑

i=1

(X2
i − σ2

i )

]

+

.

In practice, some other constant “1/C” is oftens used in lieu of “1/p” above.
The corresponding parametric empirical Bayes estimator is then given by

(3.13) (δPEB(X))i =

(
1− σ2

i

σ2
i + 1

C

∑p
j=1(X

2
j − σ2

j )

)
Xi ,
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along with its positive part estimator

(3.14) (δ+
PEB(X))i =

(
1− σ2

i

σ2
i + 1

C (
∑p

j=1(X
2
j − σ2

j ))+

)
Xi .

Note that the form of the parametric empirical Bayes estimator δPEB in
(3.13) differs from the James-Stein-type estimator δJ−S in (3.1) in the use
of the term Cσ2

i +
∑p

j=1(X
2
j − σ2

j ) instead of
∑p

j=1 X2
j in the denominator.

Therefore the former denominator can be much smaller than the latter and
hence lead to over-shrinkage. Not surprisingly, the conditions needed for
ensemble minimaxity appear somewhat more restrictive than in the James-
Stein case.

The following corollary contains conditions that guarantee ensemble min-
imaxity for the parametric empirical Bayes estimators. Simulation results
(not reported here) lead us to conjecture that ensemble minimaxity holds
under somewhat less restrictive conditions.

Corollary 3.5. Assume

p ≤
∑p

j=1 σ2
j

σ2
min

≤ C ≤ 2(p− 2) .(3.15)

Then both δPEB in (3.13) and δ+
PEB in (3.14) are ensemble minimax.

Remark: In the homoscedastic case, Condition (3.15) requires p ≤ 2(p−
2). This is satisfied if and only if p ≥ 4. In that case, δPEB in (3.13) and
δ+
PEB in (3.14) are ensemble minimax if 4 ≤ p ≤ C ≤ 2(p− 2).

Proof. Set λi = C and νi = C −
∑p

j=1
σ2

j

σ2
i

. Condition (3.15) guarantees
that νi ≥ 0 and λi ≤ 2(p − 2). It is evident that δPEB = δGS . A little care
with the positive part conditions shows that also δ+

PEB = δ+
GS .

It then follows from Corollary 3.2 that δPEB = δGS is ensemble minimax
if

diff = νi − [
C

2
− (p− 2)

σ2
min

σ2
i

] ≥ 0.(3.16)

Substituting and simplifying yields

diff =
C

2
− [

∑p
j=1 σ2

j

σ2
i

− (p− 2)
σ2

min

σ2
i

]

≥ C

2
−

∑p
j=1 σ2

j − (p− 2)σ2
min

σ2
min

,
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since
∑p

j=1 σ2
j ≥ pσ2

min ≥ (p− 2)σ2
min. Hence, from (3.15),

diff ≥ C

2
+ p− 2−

∑p
j=1 σ2

j

σ2
min

≥ 1
2
[C −

∑p
j=1 σ2

j

σ2
min

]

≥ 0 .

This verifies (3.16) and proves δPEB is ensemble minimax.
The proof for δ+

PEB is similar, but easier. λi and νi are defined as before.
Condition (3.15) is still required in order that 0 ≤ λi ≤ 2(p− 2) and νi ≥ 0.
Truth of (3.16) validates the remaining condition in Corollary 3.3, and hence
proves δ+

PEB is ensemble minimax.

Theorem 3.5. Let p ≥ 1 and C > 0. Then there exists some σ2
1,· · · ,σ2

p

such that δPEB in (3.13) is not ensemble minimax.

Proof. When p = 1, set τ2 = 1. From Lemma 3.1., we only need to show

lim
σ2
1→0

E

(
1

1 + σ2
1

X1 − C

X2
1 + (C − 1)σ2

1

X1

)2

>
1

1 + σ2
1

.

Since

E

(
1

1 + σ2
1

X1 − C

X2
1 + (C − 1)σ2

1

X1

)2

≥ 1
2
E

(
C

X2
1 + (C − 1)σ2

1

X1

)2

−E

(
1

1 + σ2
1

X1

)2

=
1
2
E

(
C2X2

1

(X2
1 + (C − 1)σ2

1)2

)
− 1

1 + σ2
1

where the last term is finite, it is then sufficient to show

(3.17) lim
σ2
1→0

E

(
X2

1

(X2
1 + (C − 1)σ2

1)2

)
= ∞ .

When C < 1, this is trivial. In fact, it holds for any σ2
1. When C ≥ 1, let

X1 =
√

1 + σ2
1Z1, Z1 ∼ N(0, 1), we have

E

(
X2

1

(X2
1 + (C − 1)σ2

1)2

)
= E

(
(1 + σ2

1)Z
2
1

((1 + σ2
1)Z

2
1 + (C − 1)σ2

1)2

)
.
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Since Z2
1

((1+σ2
1)Z2

1+(C−1)σ2
1)2

is increasing as σ2
1 → 0, and

lim
σ2
1→0

Z2
1

((1 + σ2
1)Z

2
1 + (C − 1)σ2

1)2
=

1
Z2

1

,

from monotone convergence theorem, we have

lim
σ2
1→0

E

(
Z2

1

((1 + σ2
1)Z

2
1 + (C − 1)σ2

1)2

)
= E

(
1

Z2
1

)
= ∞ .

Note that 1 + σ2
1 → 1 as σ2

1 → 0, (3.17) is then verified. Hence, when p = 1,
δPEB in (3.13) is not ensemble minimax.

For the case where p ≥ 2, let σ2
1 = 1 and σ2

2 = · · · = σ2
p = C. Again from

Lemma 3.1. we have

Rτ2(δPEB) ≥ E

(
1

τ2 + 1
x1 − C

C + ‖X‖2 − 1− (p− 1)C
X1

)2

≥ 1
2
E

(
C2X2

1

(‖X‖2 − 1− (p− 2)C)2

)
−E

(
1

(τ2 + 1)2
X2

1

)

=
1
2
E

(
C2X2

1

(‖X‖2 − 1− (p− 2)C)2

)
− 1

τ2 + 1

=
1
2
E

[
E

(
C2X2

1

(‖X‖2 − 1− (p− 2)C)2
| X1

)]
− 1

τ2 + 1
.

For any X2
1 < 1 + (p− 2)C, it is not difficult to see that

E

(
C2X2

1

(‖X‖2 − 1− (p− 2)C)2
| X1

)
= ∞

and
P (X2

1 < 1 + (p− 2)C) > 0 ,

we then have

E

(
C2X2

1

(‖X‖2 − 1− (p− 2)C)2

)
= ∞ ,

which implies

(3.18) Rτ2(δPEB) = ∞ .

Therefore, δPEB in (3.13) is not ensemble minimax. To sum up, there exists
some σ2

1, · · · , σ2
p such that δPEB in (3.13) is not ensemble minimax.
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Unfortunately, we have been unable to obtain a complete answer on the
ensemble minimaxity of the positive part estimators δ+

PEB in (3.14). Nev-
ertheless, the following theorem indicates that unlike in the case of James-
Stein-type estimators C can not be too small.

Theorem 3.6. For any p, there exists some sufficiently small C and
some σ2

1, · · · , σ2
p such that δ+

PEB in (3.14) is not ensemble minimax.

Proof. Let σ2
1 = · · · = σ2

p = 1 and τ2 = 2. Similarly as above, to show
that δ+

PEB in (3.14) is ensemble minimax, we would need to have

(3.19) E

( p∑

i=1

h2
i (X)X2

i

)
≤ 2

3
E

( p∑

i=1

hi(X)X2
i

)

with
hi(X) =

1
1 + 1

C (‖X‖2 − p)+
.

Notice that hi(X) → I{‖X‖2≤p} as C → 0 and hi(X) ≤ 1, from dominant
convergence theorem, we have

E

( p∑

i=1

h2
i (X)X2

i

)
→ E

[
‖X‖2I{‖X‖2≤p}

]

and

E

( p∑

i=1

hi(X)X2
i

)
→ E

[
‖X‖2I{‖X‖2≤p}

]

as C → 0. Hence, as C → 0, (3.19) would no longer always hold. Thus,
there exists some sufficiently small C and some σ2

1, · · · , σ2
p such that δ+

PEB

in (3.14) is not ensemble minimax.

One interesting observation here is that as C → 0, δ+
PEB reduces to the

hard-threshold estimator X1{‖X‖2>pσ2} under the homoscedastic model. The
above theorem simply indicates that the hard-threshold estimator is worse
than the ordinary MLE in terms of ensemble risk when τ2 > σ2.

Similar to the James-Stein estimator, δ+
PEB in (3.14) is better than δPEB

in (3.13) in terms of ensemble risk.

Corollary 3.6. For any constant C ≥ 0, δ+
PEB in (3.14) dominates

δPEB in (3.13) with respect to P.

Proof. Directly from Theorem 3.4..
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Although simulation results lend support to the conjecture that δ+
PEB in

(3.14) is ensemble minimax when 1 ≤ C ≤ 2(p− 2) (the lower bound could
be much smaller) and p ≥ 3, a rigorous proof is still yet to be found.

4. Generalization to the Unknown Variances Case. The discus-
sion so far has been focused on the ensemble minimaxity of shrinkage es-
timators assuming the variances σ2

i to be known. It is common in many
circumstances that variances are unknown and have to be estimated from
data. Here we consider the case where Xi ∼ N(θi, σ

2γi) for i = 1, · · · , p with
unknown σ2 but known γi. Denote Γ = diag{γ1, · · · , γp}. We also assume
that σ2 is estimated by M ∼ σ2χ2

m/m where M is independent of X, an as-
sumption which is satisfied in applications in which a pooled estimate of σ2

is used. In particular, this setting corresponds to the one-way random effects
setting of Section 5.2 with γi = 1/Ji where Ji is the number of observations
in group i. We will discuss the ensemble minimaxity of some shrinkage esti-
mators. First of all, we give two lemmas that will be used in our later proof.
The first one is the generalization of Lemma 3.1. to the unknown variances
case.

Lemma 4.1. The ensemble risk of any estimator δ with the form δi(X, M) =
(1− hi(X,M))Xi has the following representation

(4.1) Rτ2(δ) =
p∑

i=1

E




(
σ2γi

τ2 + σ2γi
Xi − hi(X, M)Xi

)2

+
τ2σ2γi

τ2 + σ2γi


 ,

where the expectation is taken with respect to the joint distribution of (X, M)
where each Xi ∼ N(0, τ2 + σ2γi) and M ∼ σ2χ2

m/m, and they are jointly
independent.

Proof. The proof follows the same approach as in Lemma 3.1. once we
condition on M . First note that

Rτ2(δ) = E

[ p∑

i=1

(δi(X, M)− θi)2
]

=
p∑

i=1

E[E[(δi(X,M)− θi)2|M ]]

Since given M , (θi, Xi) is an independent array whose distribution is
(

θi

Xi

)
∼ N

((
0
0

)
,

(
τ2 τ2

τ2 τ2 + σ2γi

))
.
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Conditioning on M , we have, as in Lemma 3.1.,

E[(δi(X, M)− θi)2|M ]

= E




(
σ2γi

τ2 + σ2γi
Xi − hi(X, M)Xi

)2

|M

 +

τ2σ2γi

τ2 + σ2γi
,

which then implies

Rτ2(δ) =
p∑

i=1

E[E[(δi(X, M)− θi)2]|M ]

= E




p∑

i=1

(
σ2γi

τ2 + σ2γi
Xi − hi(X,M)Xi

)2

+
τ2σ2γi

τ2 + σ2γi


 .

The second Lemma is an inequality concerning expectations of non-negative
random variables.

Lemma 4.2. For a non-negative random variable M and two non-negative
functions µ(M) and µ′(M), if the ratio r(M) = µ(M)/µ′(M) is non-decreasing
in M , we then have

E(Mµ(M))
E(µ(M))

≥ E(Mµ′(M))
E(µ′(M))

assuming all expectations are finite and non-zero.

Proof. First we use µ′(M) to induce a new probability distribution

Pµ′(M ∈ A) =
∫

A

µ′(m)
E(µ′(M))

dm .

Using this change of measure, we have

E[Mµ(M)]
E[µ(M)]

= Eµ′ [M · r(M)]× E[µ′(M)]
E[µ(M)]

and
E(Mµ′(M))
E(µ′(M))

= Eµ′(M) ,

the original inequality then becomes a direct application of covariance in-
equality under the new probability Pµ′ .
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Define δGSV with the form

(4.2) (δGSV (X))i =
(

1− λiMγi

νiMγi + ‖X‖2

)
Xi .

We have the following theorem characterizing the ensemble minimaxity of
δGSV (X) in (4.2). The upper bound for λi is slightly smaller since we are
now estimating σ2

i , a phenomenon observed in similar studies under the
homoscedastic model.

Theorem 4.1. δGSV in (4.2) is ensemble minimax if p ≥ 3, m ≥ 3 and
for any i = 1, · · · , p, 0 ≤ λi ≤ 2m(p−2)

m+2 and νi ≥ ( m+2
2(m−2)λi − mγmin(p−2)

γi(m−2) )+.

Proof. As in the proof for the known variance case, based on Lemma
4.1., it suffices to show

E

[(
λiMγi

νiMγi + ‖X‖2

)2

X2
i

]
≤ 2σ2γi

σ2γi + τ2
E

(
λiMγi

νiMγi + ‖X‖2
X2

i

)
.

Conditioning on M and following the proof in Theorem 3.1. and Corollary
3.2., we know

E

[(
λiMγi

νiMγi + ‖X‖2

)2

X2
i

]

≤ E

[
E

(
λiMγi

νiMγi + ‖X‖2
X2

i |M
)
×E

(
λiMγi

νiMγi + (σ2γmin + τ2)W
|M

)]
.

The difficulty here is that a direct application of the covariance inequality
on the two conditional expectation is no longer helpful since they are both
increasing in M . However, by moving the M in the numerator of the second
conditional expectation to the first one, the covariance inequality can then
be applied, i.e.,

E

[(
λiMγi

νiMγi + ‖X‖2

)2

X2
i

]

≤ E

[
E

(
λiMγi

νiMγi + ‖X‖2
X2

i |M
)
×E

(
λiMγi

νiMγi + (σ2γmin + τ2)W
|M

)]

= E

[
E

(
λiM

2γi

νiMγi + ‖X‖2
X2

i |M
)
×E

(
λiγi

νiMγi + (σ2γmin + τ2)W
|M

)]

= E

[
E

(
λiM

2γi

νiMγi + ‖X‖2
X2

i |M
)]

×E

[
E

(
λiγi

νiMγi + (σ2γmin + τ2)W
|M

)]

= E

(
λiM

2γi

νiMγi + ‖X‖2
X2

i

)
× E

(
λiγi

νiMγi + (σ2γmin + τ2)W

)
.
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Now let
µs(M) =

λiMγi

νiMγi + s
,

notice that the ratio r(M) = µs(M)/µs′(M) is non-decreasing in M for
s > s′, from Lemma 4.2. we then have

E
(

λiM
2γi

νiMγi+‖X‖2 |X
)

E
(

λiMγi

νiMγi+‖X‖2 |X
) ≤ lim

‖X‖2→∞

E
(

λiM
2γi

νiMγi+‖X‖2 |X
)

E
(

λiMγi

νiMγi+‖X‖2 |X
) = lim

‖X‖2→∞

E
(

λiM
2γi·‖X‖2

νiMγi+‖X‖2 |X
)

E
(

λiMγi·‖X‖2
νiMγi+‖X‖2 |X

) .

Applying monotone convergence theorem gives us

lim
‖X‖2→∞

E
(

λiM
2γi·‖X‖2

νiMγi+‖X‖2 |X
)

E
(

λiMγi·‖X‖2
νiMγi+‖X‖2 |X

) =
E(M2)
E(M)

=
(m + 2)σ2

m
,

which along with the previous inequality implies

E

(
λiM

2γi

νiMγi + ‖X‖2
|X

)
≤ (m + 2)σ2

m
E

(
λiMγi

νiMγi + ‖X‖2
|X

)
.

Multiplying both sides by X2
i and taking expectation leads to

E

(
λiM

2γi

νiMγi + ‖X‖2
X2

i

)
≤ (m + 2)σ2

m
E

(
λiMγi

νiMγi + ‖X‖2
X2

i

)
.

Since we have already shown that

E

[(
λiMγi

νiMγi + τ2W

)2

X2
i

]
≤ E

(
λiM

2γi

νiMγi + ‖X‖2
X2

i

)
× E

(
λiγi

νiMγi + (σ2γmin + τ2)W

)
,

in order to prove

E

[(
λiMγi

νiMγi + ‖X‖2

)2

X2
i

]
≤ 2σ2γi

σ2γi + τ2
E

(
λiMγi

νiMγi + ‖X‖2
X2

i

)
,

it is then sufficient to show

(m + 2)σ2

m
E

(
λiγi

νiMγi + (σ2γmin + τ2)W

)
≤ 2σ2γi

σ2γi + τ2
.
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As in the proof of Corollary 3.2., using the covariance inequality twice, we
have

(m + 2)σ2

m
E

(
λiγi

νiMγi + (σ2γmin + τ2)W

)

=
(m + 2)σ2

m
E

[
E

(
λiγi/W

νiMγi/W + (σ2γmin + τ2)

)
|M

]

=
(m + 2)σ2

m
E

[
E(λiγi/W |M)

E[(νiMγi/W + (σ2γmin + τ2))|M ]

]

=
(m + 2)σ2

m
E

[
λiγi

νiMγi + (p− 2)(σ2γmin + τ2)

]

=
(m + 2)σ2

m
E

[
λiγi/M

νiγi + (p− 2)(σ2γmin + τ2)/M

]

≤ (m + 2)σ2

m

E(λiγi/M)
E(νiγi + (p− 2)(σ2γmin + τ2)/M)

=
(m + 2)σ2

m

λiγi ·m/(m− 2)
νiσ2γi + (p− 2)(σ2γmin + τ2) ·m/(m− 2)

=
(m + 2)λiγi · σ2

(m− 2)νiσ2γi + m(p− 2)(σ2γmin + τ2)
.

Now applying the condition 0 ≤ λi ≤ 2m(p−2)
m+2 and νi ≥ ( m+2

2(m−2)λi −
mγmin(p−2)

γi(m−2) )+, we finally have

(m + 2)λiγi · σ2

(m− 2)νiσ2γi + m(p− 2)(σ2γmin + τ2)
≤ 2σ2γi

σ2γi + τ2

which completes the proof.

For the corresponding positive part estimator δ+
GSV given by

(4.3) (δ+
GSV (X))i =

(
1− λiMγi

νiMγi + ‖X‖2

)

+

Xi ,

as in the case of known variance, a slightly stronger result holds.

Theorem 4.2. δ+
GSV in (4.3) is ensemble minimax if p ≥ 3, m ≥ 3 and

for any i = 1, · · · , p, 0 ≤ λi ≤ 2m(p−2)
m+2 and νi ≥ (m+2

m−2λi−m(p−2)
m−2 (1+ γmin

γi
))+.

Proof. The proof follows similar steps in the proofs of Corollary 3.3. and
Theorem 4.1., therefore, we will skip most of the details and only highlight
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the parts that are substantially different. First let the shrinkage factor

h+
i (X,M) = min(1, hi(X, M)) = min

(
1,

λiMγi

νiMγi + ‖X‖2

)
.

As before, we have to prove

E
[
h+

i (X, M)2X2
i

]
≤ 2σ2γi

σ2γi + τ2
E

[
h+

i (X,M)X2
i

]
.

When σ2γi ≥ τ2, the above inequality is trivial. From now on, assume
σ2γi < τ2. As in the proof of Theorem 4.1., we have

E
[
h+

i (X,M)2X2
i

]
≤ E

(
h+

i (X, M)MX2
i

)
× E

(
λiγi

νiMγi + (σ2γmin + τ2)W

)
.

Define
µs(M) = min

(
1,

λiMγi

νiMγi + s

)
.

Note that the ratio r(M) = µs(M)/µ′s(M) is still non-decreasing in M for
s > s′. As in Theorem 4.1., applying Lemma 4.2. and monotone convergence
theorem leads to

E
(
h+

i (X, M)MX2
i

)
≤ (m + 2)σ2

m
E

(
h+

i (X, M)X2
i

)
.

It is then sufficient to show

(m + 2)σ2

m
E

(
λiγi

νiMγi + (σ2γmin + τ2)W

)
≤ 2σ2γi

σ2γi + τ2

whose proof follows exactly the same argument used in the last part of the
proof of Corollary 3.3.

When λi = C and νi = 0, δGSV in (4.2) and δ+
GSV in (4.3) reduce to the

James-Stein estimator and its positive part for the unknown variance case.
Similar to the known variances case, the choice of C in the above theorems
is different from that in the homoscedastic case. For the homoscedastic case
and ordinary minimaxity, the upper bound of the constant C can be chosen
to be as large as 2m(p−2)

m+2 for the original James-Stein estimators. While for

our case, the upper bound becomes m(p−2)
m+2 . Like in Theorem 3.2., it can be

shown that the bound can not be easily improved. However, we omit the
result here for simplicity.
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We can also extend the parametric Bayes estimator δPEB in (3.13) and
δ+
PEB in (3.14) to the unknown variance case. Consider δPEBV with the form

(4.4) (δPEBV (X))i =

(
1− CMγi

CMγi + (
∑p

j=1 X2
j −

∑p
j=1 Mγj)

)
Xi

and δ+
PEBV with the form

(4.5) (δ+
PEBV (X))i =

(
1− CMγi

CMγi + (
∑p

j=1 X2
j −

∑p
j=1 Mγj)+

)
Xi.

The following corollary gives the conditions that guarantee the ensemble
minimaxity of δPEBV in (4.4) and δ+

PEBV in (4.5).

Corollary 4.1. Assume m ≥ 6, p ≥ 3 and

p ≤
∑p

j=1 γi

γmin
≤ C ≤ 2m(p− 2)

m + 2
.(4.6)

Then both δPEBV in (4.4) and δ+
PEBV in (4.5) are ensemble minimax.

Proof. Set λi = C and νi = C −
∑p

j=1
γi

γmin
. Condition (4.6) guarantees

that νi ≥ 0 and λi ≤ 2m(p−2)
m+2 . It is evident that δPEBV = δGSV . A little care

with the positive part conditions shows that also δ+
PEBV = δ+

GSV .
It then follows from Theorem 4.1 that δPEBV = δGSV is ensemble mini-

max if

diff = νi − [
m + 2

2(m− 2)
C − m(p− 2)γmin

(m− 2)γi
] ≥ 0.(4.7)

Substituting and simplifying yields

diff =
m− 6

2(m− 2)
C +

m(p− 2)γmin

(m− 2)γi
−

∑p
j=1 γj

γi

≥ m− 6
2(m− 2)

∑p
j=1 γj

γi
+

m(p− 2)γmin

(m− 2)γi
−

∑p
j=1 γj

γi

=
γmin

γi
[
m(p− 2)
m− 2

− m + 2
2(m− 2)

∑p
j=1 γj

γmin
]

≥ γmin

γi
[
m(p− 2)
m− 2

− m + 2
2(m− 2)

2m(p− 2)
m + 2

]

= 0 .
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This verifies (4.7) and proves δPEBV is ensemble minimax.
The proof for δ+

PEBV is similar, but easier. λi and νi are defined as before.
Condition (4.6) is still required in order that 0 ≤ λi ≤ 2m(p−2)

m+2 and νi ≥ 0.
Truth of (4.7) validates the remaining condition in Theorem 4.2, and hence
proves δ+

PEBV is ensemble minimax.

5. Shrinkage towards the Common Mean. In the sections above,
we discuss the ensemble minimaxity properties of the estimators that shrink
towards zero under the heteroscedastic model. We will generalize our method
to provide a class of ensemble minimax estimators that shrink towards
the common mean in this section. Assume that X ∼ N(θ,Σ) and θ ∼
N(µ1, τ2I), where Σ is the covariance matrix. We first present a Lemma
whose proof is sufficiently simple to be omitted.

5.1. General Theory.

Lemma 5.1. There exists an orthogonal matrix Q with the form

Q =

(
1√
p1T

Q2

)
,

such that T = QΣQT can be written in the block matrix form

T =

(
T11 T12

T21 T22

)

where T11 is 1×1, and T22 = diag{t22, · · · , tpp} is a (p−1)×(p−1) diagonal
matrix.

From the fact that Q is orthogonal, we have

Q21 = 0
Q2Q

T
2 = Ip−1

QT
2 Q2 = Ip − 1

p
11T .

Moreover, we also have T22 = Q2ΣQT
2 . Since Σ is positive definite, we can

easily verify that T22 is also positive definite. Therefore, tii > 0 for all
i = 2, · · · , p. Assume p ≥ 4. Let Y = QX ,η = Qθ and Y(2) = (Y2, · · · , Yp)T .
Then we have

Y =

(
1√
p1T

Q2

)
(X1 + (X −X1)) =

( √
pX

Q2(X −X1)

)
,
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which implies Y1 =
√

pX and Y(2) = Q2(X − X1). Note that Qµ1 =
(
√

pµ, 0, · · · , 0)T and Qdiag(τ2Ip)QT = τ2Ip. Consider the estimator δcm

with the form

(5.1) δcm(X) = QT
(
Y1, ξ2(Y(2)), · · · , ξp(Y(2))

)T
,

where ξi(Y(2)) is any ensemble minimax estimator for η(2), ∀i = 2, · · · , p. We
then have the following result.

Theorem 5.1. For p ≥ 4, δcm in (5.1) is ensemble minimax.

Proof. Since ξ(Y(2)) is an ensemble minimax estimator for η(2), we have
that

E

[ p∑

i=2

(
ξi(Y(2))− ηi

)2
]
≤ trace(T22) ,

which along with

E[(Y1 − η1)2] = T11

and trace(T ) = trace(Σ) implies

E

[
(Y1 − η1)2 +

p∑

i=2

(
ξi(Y(2))− ηi

)2
]
≤ trace(Σ) .

Therefore, we have

E

[ p∑

i=1

((δc(X))i − θi)
2

]

= E
[
(QT (Y1 − η1, ξ2(Y(2))− η2, · · · , ξp(Y(2))− ηp)T )T

· (QT (Y1 − η1, ξ2(Y(2))− η2, · · · , ξp(Y(2))− ηp)T )
]

= E

[
(Y1 − η1)2 +

p∑

i=2

(
ξi(Y(2))− ηi

)2
]
≤ trace(Σ)

which completes the proof.

Note that δcm in (5.1) can be interpreted as “shrinking” towards the
overall mean since it can be written as δcm(X) = X1 + QT

2 ξ(Q2(X −X1)),
which is a generalized shrinkage estimator.
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Furthermore, if we assume that ξi(Y(2)) = (1 − hi(‖Y(2)‖2))Yi for i =
2, · · · , p, we have

δcm(X) = X1 + QT
2 diag{1− h2(‖Y(2)‖2), · · · , 1− hp(‖Y(2)‖2)}Y(2)

= X1 + QT
2 diag{1− h2(‖Y(2)‖2), · · · , 1− hp(‖Y(2)‖2)}Q2(X −X1) ,

which, along with the fact that ‖Y(2)‖2 = ‖Q2(X − X1)‖2 = ‖X − X1‖2,
implies

δcm(X) = X1 + D · (X −X1)

with D = QT
2 diag{1− h2(‖X −X1‖2), · · · , 1− hp(‖X −X1‖2)}Q2.

5.2. Random Effects Models. The standard one-way random effects model
involves observations of independent variables Yij , i = 1, · · · , p, j = 1, · · · , Ji

under the distributional assumptions

Yij |µ, τ2 ∼ N(θi, σ
2)

θi ∼ N(µ, τ2) (independent) .

Here, the unknown parameters are σ2, µ, τ2. To fit with previous notation,
let

Xi = Yi· =
1
Ji

Ji∑

j=1

Yij

M =
1

n− p

p∑

i

Ji∑

j=1

(Yij − Yi·)2, m =
p∑

i=1

(Ji − 1) = n− p .

Thus, M denotes the usual sum of squared errors and m denotes the degrees
of freedom for error.

The goal in random effects estimation (sometimes referred to as “predic-
tion”) is to estimate (predict) the values of θi under ordinary squared error
loss

L(δ, θ) =
p∑

i=1

(δi − θi)2 .

The usual estimator (predictor) is of course δi(X) = Xi. This problem is
clearly mathematically equivalent to the ensemble minimaxity formulation.
Hence, ensemble minimaxity in the hierarchical formulation is identical to
ordinary minimaxity for the estimation of {θi} in the random effects model.
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We construct a class of ensemble minimax generalized shrinkage estima-
tors following the approach in Section 5.1. Let Γ = diag{1/J1, · · · , 1/Jp}.
From Lemma 5.1, there exists an orthogonal matrix Q with the form

Q =

(
1√
p1T

Q2

)
,

such that T = QΓQT can be written in the block matrix form

T =

(
T11 T12

T21 T22

)

where T11 is 1×1, and T22 = diag{t22, · · · , tpp} is a (p−1)× (p−1) diagonal
matrix.

Assume p ≥ 4. Let Y = QX ,η = Qθ and Y(2) = (Y2, · · · , Yp)T . Consider
the estimator δcmv with the form

(5.2) δcmv(X) = QT
(
Y1, ξ2(Y(2),M), · · · , ξp(Y(2),M)

)T
,

where ξi(Y(2),M) is any ensemble minimax estimator for η(2), ∀i = 2, · · · , p.
Note that δcmv in (5.2) can be interpreted as “shrinking” towards the overall
mean since it can be written as δcmv(X) = X1 + QT

2 ξ(Q2(X − X1),M),
which is a generalized shrinkage estimator. Following the similar approach
in Theorem 5.1, it is easy to verify that δcmv in (5.2) is ensemble minimax.

Especially, if we choose δ+
GSV as ξ here, we get the estimator δ+

GSV ;re with
the form

(δ+
GSV ;re(X))i = X1 + QT

2 AQ2(X −X1) ,(5.3)

where A = diag{(1 − λ2Mt22
ν2Mt22+||X−X1||2 )+, · · · , (1 − λpMtpp

νpMtpp+||X−X1||2 )+}. We
have the following corollary that shows its ensemble mimimax properties.

Corollary 5.1. δ+
GSV ;re in (5.3) is ensemble minimax if p ≥ 4, m ≥ 3

and for any i = 2, · · · , p, 0 ≤ λi ≤ 2m(p−3)
m+2 and νi ≥ (m+2

m−2λi − m(p−3)
m−2 (1 +

tmin
tii

))+. Hence, δ+
GSV ;re is minimax for the random effects model under these

conditions and dominates the usual estimator δi(X) = Xi.

In the interest of space we omit the formal proof. If a single version of the
above estimators is to be used for all J1, · · · , Jp, the preferred and simple
choice would be δ+

GSV ;re in (5.3) with λi = m(p−3)
m+2 and νi = 0.
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